0 - - 1 - - 1 - - 2 - - 2 - a B a B a B - 1 - - 2 - - 2 - - 2 -

نویسنده

  • Alex Smith
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On chromatic numbers of space-times: open problems

Chromatic number: reminder. A chromatic number χ(S) of a metric space S is defined as the smallest number of colors in a coloring of S in which no two points of the same color are unit distance apart; see, e.g., (Soifer 2009) and references therein. Space-times: reminder. What will happen if we define a similar quantity for space-times, e.g., for pseudo-Euclidean (Minkowski) spaces R 1,n in whi...

متن کامل

Analytic Functions Involving Complex Order

and Applied Analysis 3 Definition 1.1 Hadamard product or convolution . For functions f and g in the class A, where f z of the form 1.1 and g z is given by g z z ∞ ∑ k 2 ckz , 1.8 the Hadamard product or convolution f ∗ g z is defined by ( f ∗ g z z ∞ ∑ k 2 akbkz k ( g ∗ f z , z ∈ U. 1.9 Definition 1.2 subordination principle . For analytic functions g and hwith g 0 h 0 , g is said to be subord...

متن کامل

Argument Property for Certain Analytic Functions

and Applied Analysis 3 2. Main Result Our main theorem is given by the following. Theorem 2.1. Let λ0 > 0, 0 < a ≤ 1 max{α1, α2} , |b 1| ≤ 2 α1 α2 , 0 ≤ a − b − 1 ≤ 1 max{α1, α2} . 2.1 If p ∈ P satisfies −2 2 < arg ( λ0 ( p z )a zp′ z ( p z )b ) < γ1π 2 z ∈ U , 2.2 where γj γj a, b, α1, α2 aαj 2 π tan−1 ( α1 α2 /2 cos ( βπ/2 ) cos ( a − b − 1 αjπ/2 ) 2λ0δj a, b, α1, α2 α1 α2 /2 cos ( βπ/2 ) sin...

متن کامل

Apéry Numbers and Central Trinomial Coefficients 3

Define the Apéry polynomial of degree n by A n (x) = n k=0 n k 2 n + k k 2. We determine p−1 k=0 (−1) k A k (1/4) and p−1 k=0 (−1) k A k (1/16) modulo a prime p > 3. Let b and c be integers and let the generalized trinomial coefficient T n (b, c) be the coefficient of x n in the expansion of (x 2 +bx+c) n. We establish the following new congruence p−1 k=0 T k (b, c) 2 (b 2 − 4c) k ≡ c(b 2 − 4c)...

متن کامل

Optimal Bounds for Neuman-Sándor Mean in Terms of the Convex Combinations of Harmonic, Geometric, Quadratic, and Contraharmonic Means

and Applied Analysis 3 Theorem 1.1. The double inequality α1H a, b 1 − α1 Q a, b < M a, b < β1H a, b ( 1 − β1 ) Q a, b 1.7 holds for all a, b > 0with a/ b if and only if α1 ≥ 2/9 0.2222 . . . and β1 ≤ 1−1/ √ 2 log 1 √ 2 0.1977 . . . . Theorem 1.2. The double inequality α2G a, b 1 − α2 Q a, b < M a, b < β2G a, b ( 1 − β2 ) Q a, b 1.8 holds for all a, b > 0with a/ b if and only if α2 ≥ 1/3 0.3333...

متن کامل

Some conjectures on congruences

1. Notation. Let Z and N be the sets of integers and positive integers respectively. For b, c ∈ Z the Lucas sequences {U n (b, c)} and {V n (b, c)} are defined by (1.1) U 0 (b, c) = 0, U 1 (b, c) = 1, U n+1 (b, c) = bU n (b, c) − cU n−1 (b, c) (n ≥ 1) and (1.2) V 0 (b, c) = 2, V 1 (b, c) = b, V n+1 (b, c) = bV n (b, c) − cV n−1 (b, c) (n ≥ 1). Let d = b 2 − 4c. It is well known that for n ∈ N, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007